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Uncertain elements must be considered in the mathematical model
of manvy dynamical systems.
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The theory associated with additive noise
models is quite advanced, but many control problems are more realistical-
ly modeled as containing uncertain and time varying parameters or gains.
For multiplicative gains of the white noise type, necessary and suf-

ficient conditions for the stability of many of these systems have been

derived previously. In this article, we develop conditions for the

stability of some continuous-time systems containinag multiplicative colored
noise.
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I. [NTRODUCTTON:

In this article we analyze some continuous-time systems
that contain uncertain parameters. The statistical properties
of the uncertain elements are used to determine conditions that
will guarantce the stability (in some probabilistic sense) of these
systems. By far, the bulk of the research comnleted on this
topic concerns systems in which the noise terms enter additively
as control or observation noise. Systems in which the noise enters
as a multiplier have been given more attention lately, but the
results obtained so far are quite incomplete. In the following
secticns, we make some contributicns to this theory.

For linear systems in which the random process enters
additively, the use of a white noise model is well justified,
especially if state augmentation is used to generate the colored
noise processes required. Even without state augmentation, the
white noise model can often be used to represent wideband processes
because the extra power in the white noise model will be dissipated
anyway. For multiplicative noise, however, the situation is not
so simple. Using state augmentation and white noise to generate
the required colored noise process leads to a non-linear system
model which is, in fact, bilinear. Without state augmentation,
the only interpretation of the results is in terms of physical
systems involving very wideband noise processes. The main con-
tribution of this rescarch is the establishment of some criterig
for the stability of the systems described below that explié;tly

involve the power and the bandwidth of the colored noisel




In the following sections of this article, an analysis
progresses from first order systems to higher ofdef systems.
Sufficient and sometimes ncecessary conditions for the exponential
mean square stability of the null solution are derived. 1In Section
IV, the damped harmonic oscillator problem is trecated in some

detail, and sufficient conditions for the mean square stability

of its null solution are given. The damped harmonic oscillator
problem was chosen because it has received considerable attention
in the literature [1, 2] so results are available for comparison.
It is an example of a system that does not evolve on a solvable

Lie group, and we are not able to duplicate the elegant results

that are often obtainable in those cases. ﬂ

1) SYSTEM DEFINITION:

We will be studying systems of the form:

dx{t) = [a + £(t)B] x(t) (1)

The initial condition is a random variable, A and B
are constant matrices, and f(e) is a real-valued colored noise

process. The easiest example to visualize is a linear dynamical

system containing a noisy gain in the feedback path, as in Figure

(1).
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FIGURE 1
MODEL OF LINEAR DYNAMICAL SYSTEM WITH NOISY FEEDBACK GAIN
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One major difficulty in studying and comparing the
results found in the literature is the abundance of concepts and
definitions surrounding the phrase '"stochastic stability'". To
avoid any problems of this kind, only the following types of
stability will be considered here:

Definition:

The zero equilibrium solution of system (1) is said
to possess exponential stability of the pth mean if there exists
positive constants a, B, and &, such that |x(o)| < & implies that
for all ¢t > @,

g

x(t) p} <8

p
x(O)I & - at) (2)
P P

where

g4

P i=1

)
x(t) xi(t)|

In this article, the case p = 2 will receive the most consideration

and the phrase ''exponentially stable in the mean square'" will

be used.

TR




111. SCALAR, FIRST ORDER SYSTEMS:

Although first order systems represent only a small
fraction of all interesting dynamical systems, they play an impor-
tant role in the research described below for two reasons.

The formulae can be evaluated easily and provide an example to
follow in the higher dimensional cases, and the formulae found
for the first order case lead to a bound for the mean square
stability of higher order systems. The detailed consideration of

this case seems warranted.

Colored Noise Results:

It turns out that one can solve first order linear

stochastic differential equations because the solution can be

expressed in terms of a functional of the random processes involved.

[3] That is, suppose f(t) is a scalar function of time. Then the

equation
x = (a + f(t))x x(0) = Xy (3)
has for its solution
t
x(t) = x_ exp cf(a + £(0))do) | (4)
0

Moreover, the mean square of x(t) is given by:
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E{x(t)x*(t)} E[exp(2at + 2‘/~f(o)do)]x02
0

t
e?at E[exp(Zu/nf(o)do)]xoz (5)
0

Furthermore, if f(t) is a Gaussian colored noise process, one can
calculate all of the statistical properties of the exponential

function in (4).

For the purpose of making comparisons with later results,
conditions that guarantee exponential mean square stability are
derived next. Assume now that f(t) is a real-valued zero mean,

stationary Gaussian random process with autccorrelation function

L 3 Tk R :
Re(ty, tp) = o e , and define the process
t
n(t) =f f(o)do
0

Then n(t) is a Gaussian random process with zero mean and auto-

corrclation function given by:
R (t;s t;) = Re(ty, t;) * h(t;) * h(ty) (6)

where h(t) is the impulse response of an integrator. n(t) is
not stationary, for at the very lcast there are initial transients

in the moments of the process.




Performing the indicated convolutions in Equation (6),

and setting tl = tz = t, one obtains:

R(t,t) =20, t+ 55 [227°F-2], t>0

Knowing Equation (4), it is straightforward to calculate criteria
for the exponential stability of the pth mean of the null solution
of System (3). A special case (p = 1) is treated by Brockett

[4, page 58].

Clearly,
t
xP(t) = xP(0) exp [p / (a + £(0))do] (7)
0
S0
E{Ix(t)lp} = Pt E{epn(t)}lxolp : (8)
But, n(t) is Gaussian, so
2
E{epn(t)} 3 e(P /Z)Rn(t,t)

and the null solution of System (3) is exponentially stable in

the pth mecan if and only if

662
a+p—a-—<0 (9)




-9_

Unstable By All Definitions
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FIGURE 2

STABILITY REGIONS TOR SYSTIM (3)
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Referring to Figure (2), it is.easy to identify systems
that have rvather peculiar properties. That is, in the region
g >8 % = afz/a, System (3) is unstable in the pth mean for p > 1,
yet almost cvery sample path has been shown to approach zero after
large time intervals [5]. Moreover, for any combination of a,
cf' and a > 0, System (3) will be unstable in the pth mean if p
is chosen large cnough. Similarly, for any given p, ofz, and
a > 0, System (3) will be stable in the pth mean if o is chosen
large enough. This last observation has an obvious interpretation;
for a given fecdback noise power, concentrating that power near
zero frequency provides the most destablizing (in pth mean)
influence. Tor further comments on the tradeoffs of studying the
behavior of sample paths (almost sure stability criteria) versus
pth mean stability, see Kozin (6, 7].

These results are easily generalized to the case in
-which £(t) is'a band-pass process, whose autocerrelation funétion

is given by:
2
Rf(tl, tz) = o¢ exp(- altl-t2|) cos wo(t1 - tz)

Once again, the autocorrelation function of p(t) is given by:

- .
Rn(tl,tz) =./~ J[ Rf(ol,oz)dol,do2
0 0
ZOfZ ) terms that grow
= az :—;—7 mln(tl.tz) + 1$ss than lincarly
o 1 tl or tz
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Then, as in Equation (8),

E[xP(t)] = eP?t g(ePN(t)} P
2
. pat (P /AR (E.E] x,P
SO
3 2
%.-1'2 L[Yp(t)]=0 @ pa + (pZ/Z)(—(Z; Of“ r:—i:—zﬁ-z) <
(¢]

in which case the convergence will be at an exponential rate.

IV. HIGHER ORDER SYSTEMS:

In Reference [8], Rabotnikov uses Picard expansions to
derive a criterion for the mean square stability of a single-
input single-output linear dynamical equation containing a white
noise parameter. The strength of his method lies in the fact
that the white noise hypothesis is not used until the end of his
proof, and then only to solve some integrals involving the noise
autocorrelation function. Without the white noise assumption,
the series of integrals obtained is too hard to evaluate. However,
the example studied in Section III provides a useful bound feor
this series of integrals and leads to a simple stability criterion

for the cxample trcated in this section.
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Above, we derived a criterion for the exponential mean
squarc stability of System (3). Suppose now that we try to
derive that same criterion using the Picard expansibn of the
solution.

Let Z(t) be the solution of the deterministic system

Z{t} = - a 2(0) (11)

Z(0) = X,

Equation (3) can be rewritten as

t
x(t)y = Zit) +J/. w(t - o)f(o)x(o)do (12)
0

where w(t) = e'at, the impulse rcsponse of System (11).

Repeatedly substituting Equation (12) back into itself

yields:

t t
x(t) = Z(t) +fe'a“'°)f(o)2(o)do . /e'a(t“’)f(c)
0 0

g
f e 39" £(q)x(q)dqdo

(o}

. ' Y % -a(t-qq)
= Z(t) +fe'a“““fcq)ch)dq ff g
( (o} ) (o] (o]
-a -
5 93 =43

f(ql) f(qz)chz)dqqul

E U % cafesny) -alde-q,) -a(qs-4s)
ff/ze ORE R RS o) E e
(o] (o) (o]

f(a3)2(a5)dqzdq,dq; + ... (13)
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(ihe convergence of this series is implied by the analysis of

Reference [5], Section 2.1.)

Next, by multiplying the series in Equation (13) by

itself, E{xz(t)} can be expressed as:

E{xz(t)} Zz(t) + terms involving E{f(t)}

it

nf /e'a(t“‘)e"‘“'p)f(q)f(p)Z(q)Z(p)dqdp |

(6} (o]

+

- R -alt-qp) -a(qg-ay) :
v 22(t) E/ a c £(a,)£(a;)2(a,)dazda;
o "0

+ terms involving third moments of f(t)

L 9 12 - -a(t-q;) -(aj-a,)
+ 22.6v] Equl dqu dq3 dq4 e e

(o} o o . o] ‘

-a(q,-q5) -a(qz-q,)
e e £(q;)£(a;) flaz)flay)Zay)

C v 9 2  -a(t-q;) -a(t-p,)
+ ZE /dql dplf dqz/ dq3 e e
(o] o (o} (o}
-a(qq-qp) -a(q;-q3) A
e e £(py)fla;)flaz)flaz)i(asz)ilpy)
t 1 t P e-a(t-pl)e-a(t°q1)
+ E‘/‘dq1 dqz'/‘dp1 dp2
(o] (0} (o} (o]

-a(qy-q;) -a(py-py)
e e f(p)f(p,y) f(a)f(a,)2(a)2(py)

R : (14)




Lquations (14) and (8) both give cxpressions for
E{xz(t)}, so the right hand side of Equation (8) is an evaluation
of the series given in (14). This is important because the series
expansion (similar to Equation (14)) for the sccond order system
considered next can be bounded termwise by the right hand side of
F'quation (14). Therefore, Equation (9) can be émployed as a
stability criterion for the sccond order system, but now only
as a sufficient condition.

For the remainder of this section, we will be considering

the system

il(t) 6 1 Yx,(c) 0
o + g(t)x, (t) (15)
-iz(t) =1 ‘ZC Z(t) 1
x(0) = X
y(t) = [0, T} %{t) (16)

Also we will assume that we are interested only in the stability

of xl(t). From System (15) we will define the matrices

0 i 0
A= b = G = [1, 0] (17)
-1 -2¢ 1

It is also convenient to definc

r(t) =‘e/\t X, (18)




and let g(t) be a stationary colored noise process, Gaussian with

: 2 : !
zero mean, variance og and autocorrelation function

Ry(1) = 0,7 e ol (19)
Combining Equations (15) through (18), xl(t) is given !

by' the integral equation

i
xl(t) = rl(t) +J/. wc(t-o)g(o)xl(c)do (20)

(o)

where

-gt \, Z_ _J Z_ -

AV

]
a
(¢]
- o

Wc(t)

Substituting Equation (20) into itself and squaring yields

E{xl(t)} = rlz(t) + terms involving first moments of g

t. t ~
* E/ fwc(t-q)wc(t-p)g(q)g(p)rl(q)rl(p)dqdp
o O

t q1
+ 2r (t) E f f welt-qp)we(a,-4,)g0)e(q,)ry(a;)dg,day
(o] (o]

+ Higher order terms as in Equation (14) (22)

Turning our attention back to Equation (14), and bringing

the expected value operator inside the integrals in that cquation,




we see that every factor of every term is positive. This allows
us to prove the following theorem.
Theorem 1:

Consider System (15). Suppose there exist two functions

of ¢, say B(z) and y(z) and a constant 6§ > 0, such that

v (8} < & BRI t e [0, =] (23)
and

W (8) < Y(D)exp(-8()1)  t € [0, <] e
Then,

Lif  pie fenll =0 it 2032 ¢ ZBLE) (25)

L . o Y2 ()

and the convergence will be at an exponential rate, with time

-constant -B(zg) + (Z/Q)ng YZ(C)-

Froof:

Using Equations (23) and (24) in (22) yields

E{xlz(t)} < GZZZ(t) + terms involving first moments of g

S

‘ sze_/”‘}fyzcc)e'“(g)(t'Q)e'B“)(t‘P)g(q)g(p)Z(q)ch)dqdp

o o

L -8(2) (t-q,) -B(%)(a;-q,)
+ 5 ZZ(t)Ej flvz(c)e ol e gla;)
[¢) 0

Higher order terms as)

ﬂ(q])g(qZJZ(qz)dqqul % (in Fquation (14)

(26)
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The Eactor 62 docs not influence the resuelr, because the limit

? of the right hand side will bec shown to be equal to zero.
Let us now assume the following relations between the

parameters in Equation (14) and those in Equation (26). Let

' 1z

{ £(t) = v(2)g(t) ot = vz(c)ogz (27)

B(z)

[}
+
1Y

so that the right hand sides of Equations (26) and (14) are the
2

i same except for the factor §°. Therefore, Equation (9), which

; says \
15 2

3 s 20
H Li% pox®fe)) = 8 df -8 » = 2 0,

! | o a

é ;
i must imply that :
g‘ lim 2 - : 3 2 2 Z
ﬁ‘ P E{x1 (t)} 0 if -B(g) + -~ °g ¥ iz) < ¢ (28)

This completes the proof, and we now direct our attention to

'E making judicious choices for A(z) and y(zg).

Optimizing the Choice of 8 and y:

| There arc conditions that B(Z) and Y(gZ) must satisfy

as functions of z. Therefore, we are free to choose B(z) and

v(z) independently for each valuc of z. The following constrained

optimization problem can, thercfore, be solved in order to

optimize the strength of Thecorem 1.

P

!
i
|




o

Maximize

g . J S
g ¥ 5 subject to wc(t) < y exp(-gt) for

Y
all t ¢ [0, =]. (29)

The values of B and y at which the maximum is achieved for each
value of ¢ form the functions B(z) and §(g). Using these values
of B(g) and &8(z) leads to the strongest version of Theorem 1.
The maximization procedure has been accomplished with a small
computer program which produced the graphs given in Figure 3.

In the literature [9, 10, 6] there have been a series
of stability boundaries derived for System (15) that apply to the
colored noise case, but none of which depend upon the bandwidth
of the noise. The boundary derived by Infante [1] is the best
of those rcportéd, and is superimposed onto Figure 3. For very
low ¢, the curves given by Equation (28) are parabolic, and, hence,
grecater than the Infante curve for any value of a. However, the
Infante boundary is comparable or better than Theorem 1 for values
of ¢ up to about 8. For wider bandwidths, the new boundary is
superior, except for r corresponding to greatly overdamped systems.
Also, our bound considers only E{xlz(t)}, whereas Infante has used
Elx, 2 (1) + x,2 (1)},

In the literature (7], there have appeared plots of
the mean square stability criteria for System (15) superimposed
on the criteria for the corresponding white noise parameter

system (Ito sense). This practice is misleading because, in the

.
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Infante case, the boundary is given for E{c" (t)}. 1In the Ito

?
case, the bound is given in terms of og', where g(t) is white

noise with autocorrelation function

E 2
Rg(T) = og (1)

In the following paragraphs the result of Theorem 1 is recalculated
in such a way that the comparison to the Ito result is justified. i

The power spectral density of g(t) corresponding to

Equation (19) is given by:

(2la) & °

S(): g
4 [1 + (mz/az)]

Suppose now that we change the vertical axis on Figure (3), so
that the stability regions are plotted in terms of Sg(O). If

we do this, all the graphs scale into the same graph, which is
independent of a. This procedure leads to Figure (4). The data
prescnted in this way indicates how the region of stability
changes as a » o, It does not change! It is known that there are
no Itg correction terms required for System (15), so the boundary
in Figure 4 is also a boundary in the limit as a » =, i.e., the
white noise case. Superimposed on Figure 4 is the necessary and
sufficient condition for the mean square stability of System (15)
for the white noise case [2]. We see that as cz becomes large,
the boundary of Equation (28) differs from the Itg result by just
a factor of 2. It is reasonable to expect the two answers to

differ by such an amount because the inequality (24) is really

‘zkﬂJL_‘
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auite conscervative. We remark in passing that the resuit of

Infante can not be superimposed onto Figure (4) because his

result would appear as a straight line whose slope is proportional
to a_l. So as o + «, Infante's boundary would approach the hori-
zontal axis.

Clearly, the idea of using the results of Section ITII
for bounding the mecan square response of higher order systems
applies to more than just second order systems. It works for any
single-input, single-output system whose impulse responsec can be

bounded by a decaying exponential, and whose noisy parameter can

be treated as a feedback gain.

¥, CONCLUSION:
We have demonstrated that the bandwidth of the colored
noisc process 1is an important consideration in determining the

stability propertics of System (15), and provided a boundary for

-the known region of stability that explicitly involves the bandwidth

of the colored noise. For large (but finite) bandwidths and for

small damping, the results enlarged the previously known region of

stability for the system considered. Also, the new bound was
derived in such a way that it remains valid in the limit as the

colored noise parameter becomes white. Any bound that depends

only on the mean squarc value of the noisc process will necessarily

fail as the bandwidth becomes arbitrarily large.
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